Optical Properties of BaEu(CO₃)₂F and Na₃La₂(CO₃)₄F: Eu³⁺: Correlations to the Crystallographic Structures

E. Antic-Fidancev, M. Lemaitre-Blaise, and P. Porcher

Laboratoire de Chimie Métallurgique et de Spectroscopie des Terres Rares, UPR 209 du CNRS, 92195 Meudon Cedex, France

and

N. Mercier and M. Leblanc

Laboratoire des fluorures, URA 449 du CNRS, Université du Maine, 72017 Le Mans Cedex, France

Received July 11, 1994; in revised form October 18, 1994; accepted October 24, 1994

The luminescent properties of trivalent europium are analyzed in Na₃La₂(CO₃)₄F: Eu³⁺ at 77 and 9 K and in BaEu(CO₃)₂F at 77 K. In BaEu(CO₃)₂F, the C_{3v} symmetry of the rare earth, deduced from the X ray diffraction study, is confirmed. In Na₃La₂(CO₃)₄F, the spectroscopic technique shows that the order which appears at low temperature implies a single site for the rare earth with a C_{3v} or a C₃ symmetry. For both compounds, the energy level scheme of the ⁷F_J (J=0-4) levels is well reproduced (weak RMS standard deviation) from six crystal field (cf) parameters consistent with the C_{3v} site symmetry. © 1995 Academic Press, Inc.

INTRODUCTION

Rare-earth fluorocarbonates were recently synthetized by hydrothermal growth, and their crystal structures were solved from single-crystal X ray diffraction. Both $Na_3Ln_2(CO_3)_4F$ and $BaLn(CO_3)_2F$ (Ln=La, Pr and Ln=Sm, Eu, Gd respectively) (1, 2) exhibit LnO_9F (Ln=La, Eu) polyhedra with a C_{3v} point symmetry for the rare-earth ion. However, in $Na_3La_2(CO_3)_4F$, a splitting of O(1) oxygen atoms on two mirror-related positions occurs (Fig. 1).

The MAS NMR study of ²³Na at room temperature (1) reveals a definite motion of Na(2) sodium atoms in Na₃La₂(CO₃)₄F, certainly related to the motion of O(1) oxygen atoms. Thus, this technique suggests that the O(1) disorder is probably connected and due to a vibrational movement of carbonate groups. The existence of a broad signal in low frequency Raman spectra supports also this hypothesis (A. Bulou, Le Mans, private communication). As the O(1) oxygen atoms belong to rareearth polyhedra, the luminescence of trivalent europium in Na₃La₂(CO₃)₄F: Eu³⁺ was investigated in order to characterize the symmetry of rare-earth atoms at low

temperature. It was then compared to that of BaEu(CO₃)₂F.

CRYSTAL STRUCTURES

The preparation of rare-earth fluorocarbonates, obtained at high temperature ($T = 700^{\circ}\text{C}$) and under high pressure (P = 220 Mpa) under hydrothermal conditions, and the resolution of the structures are described elsewhere (1, 2). Na₃La₂(CO₃)₄F is hexagonal ($P6_3/mmc$, Z = 2, a = 5.083(1) Å, c = 23.034(5) Å), BaEu(CO₃)₂F is rhombohedral ($R\overline{3}m$, Z = 6, a = 5.016(1) Å, c = 37.944(6) Å).

In both structures, X ray diffraction study leads to evidence for a 10-fold (3O + 6O + 1F) coordination of the rare-earth atoms with $C_{3\nu}$ symmetry. The splitting of oxygen atoms O(1) of carbonate groups on two mirror-related positions with a 50% site occupancy can be due to the vibration of carbonate groups. If a freezing of the vibrational disorder occurs at low temperature, one or more rare-earth sites may be expected. Their symmetry must be lowered to C_3 , in the best case, or C_2 or C_1 (Fig. 1). This conclusion would be also valid for a microtwinning of the crystals.

In both structures, the LnO_9F polyhedra are linked by vertices with a threefold axis symmetry corresponding to that of the carbonate group and form infinite $LnO_{6/2+3}F$ layers in the (a, b) plane. In Na₃La₂(CO₃)₄F, these layers are connected by fluorine atoms in order to form double (LaO₆)₂F layers which insert half of the sodium ions (Fig. 2). On the contrary, the LnO_6F layers are shifted one from each other in BaEu(CO₃)₂F and insert barium ions in 12-fold BaO₆F₆ coordination. It must be noted that a description in terms of $LnCO_3$, CO₃, BaF₂, and NaF planes, which alternate along c, also

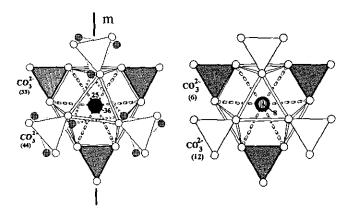


FIG. 1. Projection along c of the LnO_9F polyhedra (C_{3v} symmetry) in $Na_1La_2(CO_1)_4F$ (left) and $BaEu(CO_1)_7F$ (right).

emphasizes the analogies between both structures (Fig. 2).

OPTICAL MEASUREMENTS

The luminescence of Na₃La₂(CO₃)₄F: Eu³⁺ and BaEu (CO₃)₂F powder samples was measured under argon ion laser and dye laser excitation at liquid nitrogen temperature. The Na₃La₂(CO₃)₄F: Eu³⁺ spectrum was also recorded at 9 K. The 457.9-nm blue line of a 5-W continuous wave argon ion laser was used to excite the ⁵D₂ level of Eu³⁺ ion, allowing the classical cascade. A rhodamin 6G dye laser pumped by the argon ion laser was used to excite selectively the ⁵D₀ level. The fluorescence emission was detected through a 1-m Jarrell Ash monochromator equipped with a Hamamatsu R374 photomultiplier. The spectral resolution is better than 1 cm⁻¹.

FLUORESCENCE SPECTRA

The emission spectra of both compounds at 9 and 77 K are very similar and consist of narrow lines (1-4 lines) attributed to the ${}^5D_0 \rightarrow {}^7F_J$ transitions (J = 0, 1, 2, 4

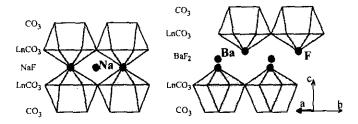


FIG. 2. Part of the Na₃La₂(CO₃)₄F (left) and BaEu(CO₃)₂F (right) structures projected along [2130], showing connection of the LnO₉F polyhedra.

respectively) (Fig. 3). 5D_0 is the only emitting level: 5D_2 and 5D_1 are relaxed to 5D_0 according to the classical quenching cascade $^5D_2 \rightarrow ^5D_1 \rightarrow ^5D_0$. The process is favored by lattice phonons of relatively high frequency ($\sim 800 \text{ cm}^{-1}$), which are available in these fluorocarbonates or other compounds such as $\text{La}_2O_2\text{CO}_3$ (3), and compounds with BO₃ groups (4, 5). It must be also noted that the poor quality of the $\text{Na}_3\text{La}_2(\text{CO}_3)_4\text{F}$: Eu^{3+} spectrum is probably due to low Eu^{3+} ion doping concentration, 2% ($\text{Na}_3\text{Eu}_2(\text{CO}_3)_4\text{F}$ does not exist).

For both compounds, the presence of one line for the ${}^5D_0 \rightarrow {}^7F_0$ transition indicates a single site of C_s , C_n , or C_{nv} symmetry for the rare earth, according to the application of the group theory selection rules for electric dipole transitions (6). A dye laser excitation of the ${}^5D_0 \rightarrow {}^7F_0$ transition confirms that all lines correspond to a single site.

The ${}^5D_0 \rightarrow {}^7F_1$ transition is allowed inside the 4f 6 configuration as a magnetic dipolar transition. As a consequence, the number of observed lines (2 for each compound, Fig. 3) as well as their relative intensity (one to two) indicates that the lowest 7F_1 cf level is associated with an E irreducible representation of rank 2. This excludes a C_2 or C_1 symmetry for the rare earth in $Na_3La_2(CO_3)_4$ - $F:Eu^{3+}$. Moreover, it implies a positive value for the cf B_0^2 parameter. In that case, the barycenter is equal to 373 cm⁻¹, close to the free ion barycenter position.

In both spectra, two strong lines and a third weak one are present for the electric dipolar ${}^5D_0 \rightarrow {}^7F_2$ transition. This is in good accordance with a $C_{3\nu}$ or C_3 point symmetry for the rare earth. If the barycenter is supposed to be close to the free ion barycenter, the lowest of level must be associated to an E irreducible representation, which gives more constraints to the values of B_0^4 and B_3^4 .

 $^5D_0 \rightarrow ^7F_3$ is not observed. Usually, the intensity of that transition is low, but always detected. That transition, forbidden at the first order by the electric/magnetic dipole selection rules, is observed only as a consequence of the J mixing, which mixes the 7F_3 wavefunctions with other 7F_J , especially 7F_1 , 7F_2 , and 7F_4 , through the second-fourth-order cf parameters (7). The lack of that transition is consistent with the relatively small values of the second- and fourth-order cf parameters (Table 1).

Four lines are observed for ${}^5D_0 \rightarrow {}^7F_4$ transition. If the symmetry of the rare-earth point site is C_{3v} or C_3 , five and six lines can be respectively expected. Then it is not possible to decide by the spectroscopic tool if the rare-earth symmetry has been really lowered to C_3 for $Na_1La_2(CO_3)_4F$.

In addition, some weak extra lines are present at the feet of ${}^5D_0 \rightarrow {}^7F_1$ and ${}^5D_0 \rightarrow {}^7F_2$ transitions in BaEu(CO₃)₂F spectrum. These satellites, indicated by arrows in Fig. 3, correspond to extra levels due to phonon coupling. The

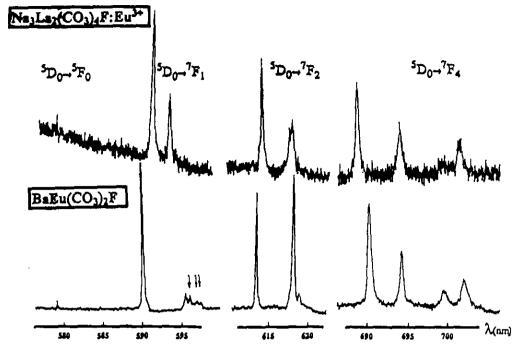


FIG. 3. Luminescence spectra of Eu³⁺ in Na₃La₂(CO₃)₄F: Eu³⁺ and BaEu(CO₃)₅F at nitrogen temperature.

same feature was observed for LaBO₃ (4) and NdBO₃ (8) around the hypersensitive transitions.

A partial energy level scheme for ${}^{7}F_{J}$ levels can be deduced from these spectra (Table 1).

SIMULATION

The $4f^6$ configuration of the europium ion is very convenient for crystal field calculations. This is due to a ground term 7F_J (J=0-6), well isolated from the rest of the

configuration (about 12000 cm⁻¹ between $^{7}F_{6}$ and $^{5}D_{0}$). Furthermore, this term is the only one of this multiplicity and, consequently, is not mixed by the crystal field with terms of other multiplicities. Thus, instead of considering the complete $4f^{6}$ configuration, involving a very large secular determinant (3003 × 3003), the crystal field calculation can be performed accurately on a reduced $|^{7}F_{JM}>$ basis involving only 49 determinantal states (9). In Wybourne's formalism (10) the crystal field potential is writ-

TABLE 1 Experimental and Calculated Crystal Field Energy Levels (cm $^{-1}$) of Eu $^{3+}$ Ion in Na $_3$ La $_2$ (CO $_3$) $_4$ F : Eu $^{3+}$ and BaEu(CO $_3$) $_2$ F

	N:	a ₃ La ₂ (CO ₃) ₄ F : 1	Eu³+	$BaEu(CO_3)_2F$				
	Experimental	Calculated	Irreducible representation	Experimental	Calculated	Irreducible representation		
⁷ F ₀	0	0	$A_{\mathfrak{i}}$	0	0	A ₁		
⁷ F ₁	352	352	E	320	319	E		
	413	413	A_2	479	482	\mathbf{A}_2		
⁷ F ₂	994	995	E	964	968	E		
	1080	1080	\mathbf{A}_{1}	1093	1093	E		
	1092	1093	E	1110	1107	\mathbf{A}_1		
⁷ F₄	2763	2763	\mathbf{A}_1	2784	2783	$\mathbf{A_{t}}$		
	2871	2871	Ē.	2864	2862	E		
	2977	2977	E	2977	2981	E		
	3018	3018	$\mathbf{A}_{\mathbf{j}}$	3024	3024	\mathbf{A}_1		
$^{5}D_{0}$	17271		,	17266				

Number 17 of Ecress, Rans, and Residue (in cin.)												
	B_0^2	B_0^4	B ₃ ⁴	B ₀ 6	B ₃	B ₆	Levels	Residue	σ			
Na ₃ La ₂ (CO ₃) ₄ F : Eu ³⁺ BaEu(CO ₃) ₂ F	277 585	-208 123	-465 -435	245 19	342 219	1210 1088	10 10	1.5 49.5	0.7			

TABLE 2

Crystal Field Parameters of Eu³⁺ in Na₃La₂(CO₃)₄F: Eu³⁺ and BaEu(CO₃)₂F (Values Are in cm⁻¹),

Number N of Levels, RMS, and Residue (in cm⁻²)

ten as a sum of products of spherical harmonics and cf parameters as

$$H_{c} = \sum_{k,q} \mathbf{B}_{q}^{k} [\mathbf{C}_{q}^{k} + (-1)^{q} \mathbf{C}_{-q}^{k}] + i \mathbf{S}_{q}^{k} [\mathbf{C}_{q}^{k} - (-1)^{q} \mathbf{C}_{-q}^{k}].$$

In that expression B_q^k and S_q^k are the real and imaginary part of the cf Hamiltonian. The number P of nonzero cf parameters depends on the symmetry. For C_{3v} symmetry, only six B_q^k are nonvanishing.

The experimental data are relatively poor for both compounds, 10 transitions are observed, and the simulations of the energy level schemes must be performed carefully. The refining procedure minimizes the RMS deviation $\sigma =$ $\sum (\sigma_i^2/N - P)^{1/2}$ considered as the figure of merit. It consists of a four-step calculation, which takes into account the considerations mentioned above from the observed spectra. The first step finds B_0^2 from the 7F_1 splitting. The second step keeps B_0^2 fixed and includes the experimental ⁷F₂ level in order to test possible values of fourth order cf parameters B_0^4 and B_3^4 . In the third step, the B_2^6 parameters are freely varied on ⁷F₄ experimental level. In the last step, all cf parameters vary simultaneously. The reproduction of the experimental energy level schemes (Table 1) can be considered as satisfactory when good RMS deviations and small residues $(R = \sum (\sigma_i^2), 1.5 \text{ and } 49.5)$ cm⁻² in our case, Table 2) are obtained. The sets of cf parameters of Na₃La₂(CO₃)₄F: Eu³⁺ and BaEu(CO₃)₂F are close together (Table 2), which is another confirmation of the structural analogies.

CONCLUSION

Luminescence spectroscopy of Eu³⁺ confirms the structural analogies between Na₃La₂(CO₃)₄F: Eu³⁺ and BaEu (CO₃)₂F. The crystal field is weak and does not seem to be strongly influenced by the connection of LaO₉F polyhedra through fluorine atoms in Na₃La₂(CO₃)₄F. Six of parameters, consistent with the C_{3v} symmetry, are sufficient to reproduce the energy level schemes.

The number of the observed emission lines in Na_3La_2 (CO_3)₄F at nitrogen temperature (9 K also) is compatible with a $C_{3\nu}$ or C_3 symmetry: C_2 and C_1 symmetries are excluded. The freezing of the motional disorder of carbonate groups at low temperature implies that the rare-earth $C_{3\nu}$ symmetry observed at room temperature must be lower. The C_3 symmetry satisfies these requirements only. The order-disorder transition must be characterized.

REFERENCES

- 1. N. Mercier, F. Taulelle, and M. Leblanc, Eur. J. Sol. State Inorg. Chem. 30, 609 (1993).
- N. Mercier and M. Leblanc, Eur. J. Sol. State Inorg. Chem. 30, 195 (1993).
- 3. J. Hölsä and T. Turkki, Thermochim. Acta 190, 335 (1991).
- E. Antic-Fidancev, M. Lemaitre-Blaise, J. P. Chaminade, and P. Porcher, J. Alloys Compd. 180, 223 (1992).
- 5. A. Rulmont and P. Tarte, J. Solid State Chem. 75, 244 (1988).
- 6. G. Blasse and A. Bril, Philips Res. Repts, 21, 368 (1966).
- C. Cascales, E. Antic-Fidancev, M. Lemaitre-Blaise, and P. Porcher, Eur. J. Solid State Chem. 28, 93 (1989).
- E. Antic-Fidancev, J. Aride, J. P. Chaminade, M. Lemaitre-Blaise, and P. Porcher, J. Solid State Chem. 97, 2721 (1992).
- 9. P. Porcher and P. Caro, J. Chem. Phys. 65, 89 (1976).
- B. G. Wybourne, "Spectroscopic properties of rare earth ions in crystals," Wiley, New York, 1965.